The geometry of right angled Artin subgroups of mapping class groups

نویسندگان

  • Matt T. Clay
  • Christopher J. Leininger
  • Johanna Mangahas
چکیده

We describe sufficient conditions which guarantee that a finite set of mapping classes generate a right-angled Artin group quasi-isometrically embedded in the mapping class group. Moreover, under these conditions, the orbit map to Teichmüller space is a quasiisometric embedding for both of the standard metrics. As a consequence, we produce infinitely many genus h surfaces (for any h at least 2) in the moduli space of genus g surfaces (for any g at least 3) for which the universal covers are quasi-isometrically embedded in the Teichmüller space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The geometry of the curve graph of a right-angled Artin group

We develop an analogy between right-angled Artin groups and mapping class groups through the geometry of their actions on the extension graph and the curve graph respectively. The central result in this paper is the fact that each right-angled Artin group acts acylindrically on its extension graph. From this result we are able to develop a Nielsen–Thurston classification for elements in the rig...

متن کامل

The geometry of purely loxodromic subgroups of right-angled Artin groups

We prove that finitely generated purely loxodromic subgroups of a right-angled Artin group A(Γ) fulfill equivalent conditions that parallel characterizations of convex cocompactness in mapping class groups Mod(S). In particular, such subgroups are quasiconvex in A(Γ). In addition, we identify a milder condition for a finitely generated subgroup of A(Γ) that guarantees it is free, undistorted, a...

متن کامل

Abstract Commensurators of Right-angled Artin Groups and Mapping Class Groups

COMMENSURATORS OF RIGHT-ANGLED ARTIN GROUPS AND MAPPING CLASS GROUPS MATT CLAY, CHRISTOPHER J. LEININGER, AND DAN MARGALIT Abstract. We prove that, aside from the obvious exceptions, the mapping class We prove that, aside from the obvious exceptions, the mapping class group of a compact orientable surface is not abstractly commensurable with any right-angled Artin group. Our argument applies to...

متن کامل

Right-angled Artin Groups and a Generalized Isomorphism Problem for Finitely Generated Subgroups of Mapping Class Groups

Consider the mapping class group Modg,p of a surface Σg,p of genus g with p punctures, and a finite collection {f1, . . . , fk} of mapping classes, each of which is either a Dehn twist about a simple closed curve or a pseudo-Anosov homeomorphism supported on a connected subsurface. In this paper we prove that for all sufficiently large N , the mapping classes {f 1 , . . . , f k } generate a rig...

متن کامل

Convex Cocompactness in Mapping Class Groups via Quasiconvexity in Right-angled Artin Groups

We characterize convex cocompact subgroups of mapping class groups that arise as subgroups of specially embedded right-angled Artin groups. That is, if the right-angled Artin group G < Mod(S) satisfies certain conditions that imply G is quasi-isometrically embedded in Mod(S), then a purely pseudo-Anosov subgroup H < G is convex cocompact in Mod(S) if and only if it is combinatorially quasiconve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010